Diagnostics in asthma

Doc.dr.sc. Sanja Popović-Grle
Subspecialist pulmonologist
University Hospital for Lung Diseases “Jordanovac”

Zagreb
Croatia
Asthma is like love…

Everybody knows what it is, but no one could define it completely
Interest for asthma from an ancient time...

• Written documents about asthma in 3500 B.C. from Egyptian Empire.

Asthma is a Greek word, means gasping
Asthma today

- 300 million people with asthma in the world
- Prevalence of asthma is 50% bigger each decade
- If the trend in asthma prevalence sustains until 2050, it will be more 100 million new asthma patients
- Mortality in asthma 5/100,000
Damage of epithelial cell (by allergens, viruses, drugs, irritants...) activates secretion of cytokines, chemokines

- A chronic inflammatory disorder of the airways
- Many cells and cellular elements play a role
- Chronic inflammation is associated with airway hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing
- Widespread, variable, and often reversible airflow limitation
Dammage in all bronchial levels

- Smooth m. hypertrophy & hyperplasia
- Thickened BM
- Edematous submucosa with infiltration of granulocyte
- Infiltration of bronchial & para-bronchial tissues with monocytes & lymphocytes
- Hyperplasia of mucous glands
- Desquamation of epithelium
- Mucous plug
- Vasodilation
Asthma definition
First part of the asthma definition—
inflammation

“
Asthma is a chronic inflammatory disorder of
the airways in which many cells and cellular
elements play a role
”

Objectivisation of inflammation process in bronchi:

1. **FeNO**: Increased concentration of NO in exhaled airflow
2. **Eosinophiles** in sputum and peripheral blood smear
3. Increased level of **ECP** in serum
4. Lowered **pH** in exhaled air
Second part of the asthma definition – clinical presentation

- “The chronic inflammation is associated with bronchial hyperresponsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, particularly at night and early in the morning.”

- Anamnesis also:
 - cough more than 10 days without fever

- Symptoms of rhinitis ("United airways"), rhinitis could be early stage of asthma

- In each patient with rhinitis, we should search for asthma, because asthma is 3x more often in rhinitic patients
Clinical difference of asthma and COPD

<table>
<thead>
<tr>
<th>ASTHMA</th>
<th>COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning of disease: $< 30y$</td>
<td>> 40 years</td>
</tr>
<tr>
<td>Breathing problems sudden and variable beginning</td>
<td>Progressive and progredient</td>
</tr>
<tr>
<td>Smoking habit rarely</td>
<td>Practicly always</td>
</tr>
<tr>
<td>Cough mostly at night</td>
<td>Coughing out in the morning</td>
</tr>
<tr>
<td>$FEV_1 (PEF)$ variable</td>
<td>Always lowered</td>
</tr>
<tr>
<td>Bronchobstruction reversible ($\text{increase of } FEV_1 > 15%$)</td>
<td>irreversible</td>
</tr>
</tbody>
</table>
Bronchial hyperresponsiveness

INDICATION:
- Each patient with:
 - asthma symptoms, but
 - NORMAL lung function, and
 - NEGATIVE bronchodilator test to SABA
- should perform inhalation challenge test with methacholine to confirm asthma diagnosis
Third part of the asthma definition – **lung function**

- "These episodes are usually associated with widespread, but variable, airflow obstruction within the lungs, which is often reversible either spontaneously or with treatment."

- **Measurement of airflow obstruction (ventilation):**
 - Spirometry

- **Variable obstruction:**
 - PEF monitoring

- **Reversibility:**
 - Bronchodilator test with short-acting β_2-agonist (SABA)
Measuring bronchial obstruction - Typical Spirometric (FEV$_1$) Tracings

Note: Each FEV$_1$ curve represents the highest of three repeated measurements.
Example of positive bronchodilator test in asthmatic (FEV₁ + 54%, PEF + 45%, measured 21 minutes after salbutamol application)
“If you can not measure it, you can not improve it”

Lord Kelvin (1824-1907)
Peak expiratory flow (PEF)

- PEF correlates very good with FEV$_1$ (forced expiratory volume in first second).
- PEF correlates excellent with the degree of clinical worsening and respiratory gases.
Classification of asthma severity

<table>
<thead>
<tr>
<th></th>
<th>Intermittent</th>
<th>Persistens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mild</td>
<td>Moderate</td>
</tr>
<tr>
<td>Daily Symptoms</td>
<td><1x week</td>
<td><1x day</td>
</tr>
<tr>
<td>Night symptoms</td>
<td><2x month</td>
<td><1x week</td>
</tr>
<tr>
<td>FEV₁ (PEF)</td>
<td>>80%</td>
<td>>80%</td>
</tr>
</tbody>
</table>
PEF indications

PEF Diagnostics
- evaluation about the stage of the disease (GINA classification)
- bronchodilator reversibility
- is there variability of PEF values – PEF monitoring

PEF Therapy
- evaluation of *immediately* efficiency: is there a growth >15% after emergency treatment
- *long term* evaluation of efficiency: trend of PEF thought time
Peak flow meter models

- Most models are mechanical, today there are electronic models with memory.
- Technique for measurements are the same for all models.
Technique for PEF measurement

1. Sign on the scale should be placed on zero
2. Tube should be connected on PEF-meter
3. Maximal inspirium, instrument should be put in mouth, follow by strongly and fast exhalation
4. Display will show PEF value in L/min
General rules for PEF measurements

- PEF is measured for 3 times, while the best of those three measurements is recorded as the PEF value.
- This PEF value is correlated with reference value for a healthy average individual of the same age, sex, and height (common for the whole Europe), result in percentage.
 - Normal values for healthy woman is above 350 L/min.
 - Normal values for healthy man is above 550 L/min.
Bronchodilator test with salbutamol

- Each patient with asthma should have data of salbutamol reversibility in his medical history.
- PEF increase for 15% means reversibility = positive salbutamol test.
- A formula for the reversibility test:

\[
\frac{B-A}{A} \times 100
\]

- B – value of FEV$_1$ after 15-30 minutes of inhalation 400 mcg salbutamol.
- A – basic FEV$_1$ measurement, before drug application.
Negative salbutamol test

A patient with asthma could have negative salbutamol test (almost 20% of patients), because:

- test is not performed correctly (low dose of salbutamol, poor inhalation technique, not cooperative patient, didn’t understand...)
- the patient is under asthma medication, included bronchodilator, which is still acting (SABA, LABA, anticholinergics, methylxanthins...)
- the patient is in acute respiratory infection
- the patient has gene polymorphism with resistance of β_2 agonist receptor
- etc...
The best personal PEF

Three different ways:

• 1. The best PEF value during 14 days PEF monitoring during good asthma control.
• 2. The best PEF value during two years recorded by the patient on his own PEF meter.
• 3. Calculated PEF value from spirometry on the control visit to doctor, during good asthma control.
PEF monitoring

- Measuring PEF value during 10-14 days for PEF variability
- PEF variability is connected with asthma severity
- Even normal persons has PEF variability 3-5%, less than 10%
- Intermittent asthma (GINA I) has PEF variability <20%
- Mild persistent asthma (GINA II) has PEF variability 20% - 30%
- Moderate and severe persistent asthma (GINA III and GINA IV) has PEF variability >30%
PEF monitoring formula

- PEF measurements are two times (2 x) per day, in the morning after awakening (6-11 a.m.) and in the evening before sleeping (18-23 h) (always 3 times, the best effort recorded).

- **Morning** PEF in asthmatics **is lower** than the evening PEF values.

\[
\text{PEF} = \frac{\text{evening PEF} - \text{morning PEF}}{\text{evening PEF} + \text{morning PEF}} \times 100
\]

\[
\text{PEF} = \frac{\text{(evening PEF + morning PEF)}}{2}
\]
PEF in acute asthma attack

- **Evaluation of necessity for hospitalization:**
 1. PEF <150 L/min
 2. If PEF doesn’t grow for 15% after therapy

- **Therapy of acute attack:**
 - salbutamol inhalation with nebulisator 1 ml Ventolin solution +2 ml F.O.
 - Prednisone or methylprednisolone: 80-125 mg i.v.
Response to asthma attack therapy is fast!

1-2 hours after adequate treatment in asthmatic improvement of:
- Respiratory gases (decrease of PaCO$_2$)
- Increase of respiratory mechanics (PEF increase ->50% of predictive, or >200 L/min)

If response didn’t appear hospitalization is indicated.
Asthma diagnosis include identification of risk factors and triggers

- Respiratory infections
- Allergens
- Cold air
- Exercise
- Medication (Aspirin)
- GERD
- Emotions
For successful asthma diagnosis – essential both participants

• A PATIENT

• A PHYSICIAN
Allergens

*House dust mites *Dermatophagoides pteronyssinus
*Tree, grass and weed pollen
*Animal dander
*Cockroach *Blatella germanica
*Moulds
Asthma Insights & Reality in Central and Eastern Europe (AIRCEE, 2002)

Population

<table>
<thead>
<tr>
<th>Sampling Frame</th>
<th>Interview Length</th>
<th>Completed Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults with asthma and parents of children (under 16)</td>
<td>Telephone</td>
<td>25 Minutes</td>
</tr>
<tr>
<td>with asthma (physician diagnosed and past year medication or asthma attacks</td>
<td>screening of a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>national random</td>
<td></td>
</tr>
<tr>
<td></td>
<td>digit dialing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sample of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>households</td>
<td></td>
</tr>
</tbody>
</table>

Country

<table>
<thead>
<tr>
<th>Country</th>
<th>Sample Size</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulgaria</td>
<td>3.128</td>
<td>100</td>
</tr>
<tr>
<td>Croatia</td>
<td>3.107</td>
<td>101</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>5.225</td>
<td>207</td>
</tr>
<tr>
<td>Hungary</td>
<td>3.713</td>
<td>204</td>
</tr>
<tr>
<td>Latvia</td>
<td>2.453</td>
<td>100</td>
</tr>
<tr>
<td>Lithuania</td>
<td>5.576</td>
<td>100</td>
</tr>
<tr>
<td>Poland</td>
<td>3.018</td>
<td>300</td>
</tr>
<tr>
<td>Romania</td>
<td>3.638</td>
<td>103</td>
</tr>
<tr>
<td>Russia</td>
<td>3.390</td>
<td>100</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3.228</td>
<td>100</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1.939</td>
<td>102</td>
</tr>
<tr>
<td>Ukraine</td>
<td>4.326</td>
<td>100</td>
</tr>
</tbody>
</table>
Frequency of lung function measurement in asthma patients

- Only once
- Each 6 months
- Several times
- Once monthly
- On each visit
- Never
- Not in the last year
Unknown facts in asthma

- We have few cornerstones in asthma diagnostics:
 - Anamnesis (typical symptoms)
 - Lung function measurements

- But, even today, we have lot of unknown and unpredictable facts in asthma patients
Need for new asthma concept

Steven Holgate on World Asthma Congress November, 7th 2008, Monte Carlo:

Invitation to all scientists to find new asthma concept, asthma is not just inflammation of airways

Lot of work to do for all involved in asthma